
SAS!...R(aaah), Saviours of the Data Vis
PP12

Sophie Shapcott & Jack Finch | sophie.shapcott@gemprogramming.com & jack.finch@gemprogramming.com

Overview
R and Python are words we hear being uttered more and more within the pharmaceutical programming community. But what are the important differences between SAS® and these open-source
software packages when choosing how to visualise your data?
SAS is the de facto software for the Pharmaceutical Industry. It provides a comprehensive validated framework with several user-friendly interfaces. There is, however, an increasing interest in open-
source software, such as R and Python. Many pharmaceutical organisations are now accelerating discussions around the use of open-source software packages. This poster compares the use of SAS
versus R, focusing on data visualisation and graphic capabilities.
An animated lab boxplot and an annotated Kaplan-Meier (KM) plot will be generated using SAS and R to compare ease of use, appearance, annotations, and animation. The SAS version used is 9.4M6
and the R version is 4.1.0.

SASR

To get the median survival times from PROC LIFETEST use
the following:
ods output quartiles=quartiles;
Create variables in the dataset with these values and
include this statement in the PROC SGPLOT:
text x=xlabel_a y=ylabel text=lab_a /
textattrs=(size=8);

Use this statement to get the values for the log-rank p-
value with α=0.05:
ods output homtests=tests;
Create a macro variable with this p-value:
proc sql noprint;

select PROBCHISQ into: pval trimmed
from tests;

quit;
Then include the following statement in the PROC SGPLOT:
inset "Log-rank p=&pval." /
position=bottomleft textattrs=(size=12)
border;

Use the following options:
printerpath=gif /*GIF universal printer*/
animduration=1 /*1 seconds between frames*/
animloop=yes /*Play continuously*/
Noanimoverlay /*Display graphs
sequentially*/
With an ODS PRINTER statement, the animation is started
and stopped with an animation=start/stop option.

Discussion

Using the data from the PROC LIFETEST when the following
option is added:
(atrisk=0 to 60 by 10)
add in this statement to the PROC SGPLOT:
xaxistable atrisk / x=tatrisk class=stratum
colorgroup=stratum attrid=trtmt
location=outside;

To produce the median droplines in R, all that is needed is
the following argument in the ggsurvplot function:
surv.median.line="hv“, where hv = horizontal and
vertical.

Select the variable to base the animation on:
animated_plot <- stationary_plot +
transition_reveal(ADY, keep_last = TRUE)
Animate the plot and save as a GIF with the following
function: animate(animated_plot, nframes=6,
fps=0.5, renderer =
gifski_renderer("anim_bxplt_poster.gif"),
height=7.5, width=10, units="in", res=200)

The number of events are concatenated using:
surv_plot$data.survtable$cum.n.event <-
paste(surv_plot$data.survtable$cum.n.event,
" (“,surv_plot$data.survtable$cum.n.censor,
")“). The following piece of code creates the table:
event_tbl <- ggsurvtable (fit=
surv_plot$data.survtable, survtable =
"cumevents", ggtheme=theme(...),
tables.theme=theme(...), ...)

ANIMATION (Boxplots Only):

• SAS: The animation of these boxplots in SAS required a couple of extra steps on top of a normal program. Firstly, a
variable was created based on the values of the x-axis tick marks called ‘build_day’. To retain the previous boxes at
later frames the data needed to be duplicated for each previous value of the build_day variable. For example, the
second frame consisted of both Day 1 and Day 15 data. Next, system animation options needed to be applied and an
ods printer statement was used to generate a .gif file. This means it isn’t a straightforward job to adapt an existing
figure’s program to produce an animated GIF compared to R.

• R: The package gganimate, which is an extension to ggplot, makes the animation of plots easy to do with the addition
of only a couple of functions to the static plot. The first is an additional ‘layer’ to the plot which identifies the variable
to animate across and the second is the function animate. This renders the resulting plot to whichever format is

required with many options available. The manual ‘coding’ of the animated variable needed in
SAS is achieved ‘behind the scenes’ as part of the gganimate package.

APPEARANCE:

• SAS: For both of the plots in SAS, the visual attributes were mapped to treatment groups using a discrete attributes
map, like the boxes in the box plots. For the KM plot, the attributes map controls the colour and style of the lines and
markers, as well as the x-axis table values. The option, dattrmap=<dataset name> is used on the procedure
statement. Also, on each statement within the plotting procedure the attrid=<variable name> option is used to
point SAS to the correct variable used to map the attributes.

• R: Within the ggplot package, there is a theme function which can be used to specify background colours, text
families, legend size, etc. If this is saved as an R object (as done here), then it can be added to the end of each graph
definition in order to obtain consistency across all plots in a study. Furthermore, functions such as
scale_fill_manual and scale_y_continuous can be added to the plot definition in order to customise the defaults
with company colours, titles, legends etc.

ANNOTATION (KM Plots Only):

• SAS: A standard KM plot in SAS can be produced relatively easily but to further customise can be a
challenge. To get the median values for reference lines, another ODS statement was needed - ods output

quartiles=<dataset name>;. These median values were then used as coordinates to get the label correctly
positioned near the reference line on the x-axis using a text statement. These median values were also used in
dropline statements to get the reference line in the required location. The p-value was obtained using the ODS
statement ods output homtests=<dataset name>;. This was then placed on the plot using an inset statement
within the SGPLOT procedure. There are multiple options for positioning and formatting of text within graphs which
fall outside the scope of this poster.

• R: Annotations such as the p-value, median droplines, and risk tables can be easily added to a KM plot when using the
survminer package. It is just a case of changing the values of certain arguments within the ggsurvplot function.
However, in order to add in additional information, such as the median values and the bottommost table, further
work is required. For example, in order to obtain the data for the second x-axis table in the correct format, the output
produced from the ggsurvplot function had to be manipulated. This then meant that the final plot and two tables
had to be aligned back together using the gridExtra package.

EASE OF USE:

• SAS: The two procedures, proc sgplot and proc sgpanel enable users to create a variety of plots simply by
changing the statements within. For example, vbox and panelby with proc sgpanel is used to obtain the boxplots
and scatter, step, and xaxistable along with proc sgplot is used to obtain the KM plot.

• R: Using the ggplot2 package, creating any plot is a case of building ‘layers’ on top of the ‘base’ defined using the
ggplot function. For example, to obtain the stationary boxplots, five additional layers were required: geom_boxplot
(for the basic boxes), stat_boxplot (for the whiskers with caps), geom_point (highlighting the mean for each box),
geom_line (joining up the mean points), and facet_wrap (a separate subplot per lab test). The KM plot could be
created using a similar method however the package survminer gives the capability to produce the curves, certain
tables, p-value, and median lines just by setting different arguments in the function ggsurvplot.

Conclusions
• Overall, both R and SAS offer the capability to readily produce complex, graphical visualisations of data. In some cases, R may provide a more apparent method of customisation, e.g. the KM plot droplines.
• Each of these programming languages has the ability to produce high quality customised plots, with consistent themes and animation capabilities.
• Historically, a potential drawback for R in the pharmaceutical industry, is the validation effort required for each package used (in this case, around seven packages). This topic is under much discussion

across the industry, in particular with groups such as the R Validation Hub (https://www.pharmar.org/about/).
• A direction worth investigating is the integrated use of SAS and R, for instance via SAS/IML®, where each language is being used to its strengths. GEM will investigate this and present our findings at a future

date.

Scan the QR code for high-res
plots and program code.

mailto:Sophie.Shapcott@gemprogramming.com
mailto:jack.finch@gemprogramming.com
https://www.pharmar.org/about/
https://github.com/sophie-gem/GEM-PHUSE-EU-2021

